

Audit Report

VIC Rewards Smart Contract

Prepared by:

Ofnog Technologies Pvt. Ltd

Corporate Office:
516, Tower B4, Spaze
itech park Gurgaon
Haryana 122001 India
info@ofnog.com
www.ofnog.com
CIN: U72200HR2018PTC072925

mailto:info@ofnog.com
http://www.ofnog.com/

Introduction

This is a technical audit for VIC token smart contract. This documents outlines our

methodology, limitations and results for our security audit.

Token name – VIC (Vitality Coin) Rewards

Token Symbol - VIC

Decimals allowed - 6

Token Total Supply - 5,000,000,000

Synopsis

Overall, the code demonstrates high code quality standards adopted and effective use of

concept and modularity. VIC smart contract development team demonstrated high

technical capabilities, both in the design of the architecture and in the implementation.

Code Analysis

Besides, the results of the automated analysis, manual verification was also taken into account.

The complete contract was manually analysed, every logic was checked and compared with the

one described in the whitepaper. The manual analysis of code confirms that the Contract does not

contain any serious susceptibility. No divergence was found between the logic in Smart Contract

and the whitepaper.

Scope

This audit is into the technical and security aspects of the VIC smart contract. The key aim

of this audit is to ensure that tokens to be distributed to the investors are secure and

calculations of the amount is exact. The next aim of this audit is to ensure the implementation of

token mechanism i.e. the Contract must follow all the ERC20 Standards. The audit of Smart

Contract also checks the coded algorithms works as expected.

Ofnog Technologies is one of the parties that independently audited the VIC Smart Contract.

This audit is purely technical and is not an investment advice. The scope of the audit is limited to

the following source code file:

Filename: VIC.sol

Github Link: https://github.com/VIC/VICSmartContract/blob/master/root/VIC.sol

Commit Hash: d0e33cf462e71afa336244039cea33b9b6c57f8e

Traditional Way of Software

Development

The code was provided to the auditors on Github. The codebase was properly version

controlled.The code is written for Solidity version 0.4.24.

The codebase uses community administered high quality Open Zeppelin framework. This

software development practices and components match the expected community

standards.

VIC Smart Contract Address: 0xc9036aa3687f51265e97741e92d30dddfda76510

Solidity Code:

Overview

The project has only one file, the VIC.sol file which contains 172 lines of Solidity code. All

the functions and state variables are well commented using the Natspec documentation for the

functions which is good to understand quickly how everything is supposed to work.

Testing

Primary checks followed during testing of Smart Contract is to see that if code :

We check the Smart Contracts Logic and compare it with one described in Whitepaper.

The contract code should follow the Conditions and logic as per user request.

We deploy the Contract and run the Tests.

We make sure that Contract does not lose any money/Ether.

Vulnerabilities Check

Smart Contract was scanned for commonly known and more specific vulnerabilities.

Following are the list of commonly known vulnerabilities that was considered during the audit of

the smart contract:

TimeStamp Dependence: The timestamp of the block can be manipulated by the miner,

and so should not be used for critical components of the contract. Block

numbers and average block time can be used to estimate time (suggested). VIC smart

contract does not have any timestamp dependence in its code.

Gas Limit and Loops: Loops that do not have a fixed number of iterations, hence due to

normal operation, the number of iterations in a loop can grow beyond the block gas limit

which can cause the complete contract to be stalled at a certain point. VIC smart

contract is free from the gas limit check as the contract code does not contain any loop in

its code.

Compiler Version: Contracts should be deployed with the same compiler version and flags

that they have been tested the most with. Locking the pragma helps ensure that contracts do

not accidentally get deployed using, for example, the latest compiler which may have higher

risks of undiscovered bugs. VIC smart contract is locked to a specific compiler version of

0.4.24 which is good coding practice.

ERC20 Standards: VIC smart contract follows all the universal ERC20 coding

standards and implements all its functions and events in the contract code.

Redundant fallback function: The standard execution cost of a fallback function should

be less than 2300 gas, VIC smart contract code does not have any fallback function,

hence it is free from this vulnerability.

Unchecked math: Need to guard uint overflow or security flaws by implementing the

proper maths logic checks. The VIC smart contract uses the popular SafeMath library

for critical operations to avoid arithmetic over or underflow and safeguard against unwanted

behaviour. In particular the balances variable is updated using the safemath operation.

Exception disorder: When an exception is thrown, it cannot be caught: the execution

stops, the fee is lost. The irregularity in how exceptions are handled may affect the security

of contracts.

Unsafe type Inference: It is not always necessary to explicitly specify the type of a

variable, the compiler automatically infers it from the type of the first expression that is

assigned to the variable.

Reentrancy: The reentrancy attack consists of the recursively calling a method to extract

ether from a contract if user is not updating the balance of the sender before sending the

ether.

In VIC smart contract calls to external functions happen after any changes to state variables

in the contract so the contract is not vulnerable to a reentrancy exploit. The VIC smart

contract does not have any vulnerabilities against reentrancy attack.

DoS with (Unexpected) Throw: The Contract code can be vulnerable to the Call Depth

Attack! So instead, code should have a pull payment system instead of push. The

VIC smart contract does not implement any payment related scenario thus it is not

vulnerable to this attack.

DoS with Block Gas Limit: In a contract by paying out to everyone at once, contract risk

running into the block gas limit. Each Ethereum block can process a certain maximum

amount of computation. If one try to go over that, the transaction will fail. Therefore again

push over pull payment is suggested to remove the above issue.

Explicit Visibility in functions and state variables: Explicit visibility in the function and

state variables are provided. Visibility like external, internal, private and public is used and

defined properly.

Features in Smart Contract

1. Ownable - The smart contract and the tokens implemented it are owned by a particular

entity (ethereum address). To use those tokens the owner will have to sign with his private

key. As we deploy the smart contract on Ethereum blockchain, initially all the tokens will be

owned by the owner of the smart contract i.e. the entity offering the crowdsale.

Code: Line 63 - 68

2. Transferrable - The tokens can be transferred from one entity to other(like to exchanges

for trading). This transfer can be made by using any ethereum wallet which supports

ERC20 token standard, for eg. MyEtherWallet, Mist Etc.

Code: Line 95 - 104

3. Viewable Tokens - As you already may be aware with the transparent nature of

blockchain, all the tokens holders and their exact balance is made clearly visible, on

Ethereum blockchain explorers like Etherscan and Ethplorer. Their are functions which are

implemented to return informations like token balance of any particular token holder, the

token allowance amount of any particular Token holder, which he has allowed to any other

entity(Ethereum address).

Code: Line 90 - 92

4. Approvable - Any Token holder if he wills, can approve some other address, who will on

his behalf transfer the approved amount of tokens from token holder¶s to others.

Code: Line 131 - 135

5. Transfer Ownership -Ownership of the smart contract can be transferred to a new

ethereum address(entity), this can be done only by the current owner of the smart contract.

Code: Line 142 - 150

Risk

The VIC Smart Contract has no risk of losing any amounts of ethers in case of external

attack or a bug, as contract does not takes any kind of funds from the user. If anyone tries to

send any amount of ether to the contract address, the transaction will cancel itself and no ether

comes to the contracts.

The flow of tokens from this VIC contract can be controlled using a script running on the backend

and visually through Etherscan.io. By using Etherscan.io working of code can be verified which

will lead the compiled code getting matched with the bytecode of deployed smart contract in the

blockchain.

Therefore, there is no anomalous gap in the VIC smart contract, tokens will be distributed

to all the investors as per the amount paid by them during Pre-ICO/ ICO. As all the funds are held

with owner’s address thus he will be distributing all the tokens, so any possible losses due to

flaws in the VIC smart contract is not possible to occur.

Conclusion

In this report, we have concluded about the security of VIC Smart Contract. The smart

contract has been analysed under different facets. Code quality is very good, and well

modularised. We found that VIC smart contract adapts a very good coding practice and

have clean, documented code. Smart Contract logic was checked and compared with the one

described in the whitepaper. No discrepancies were found.

